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INTRODUCTION

It has been known since the 1950's that different strains of laboratory rats
exhibit different susceptibility to various kinds of tumors (Dunning and Curtis,
1945). The Wistar Furth (WF) strain is highly susceptible to both spontaneous and
chemically-induced mammary carcinomas. The Fischer 344 (F344) strain exhibits
intermediate susceptibility. The Copenhagen (Cop) and Wistar Kyoto (WKy) strains
are resistant to both types of mammary cancer (Dunning and Curtis, 1945; Gould,
1986; Haag et al., 1992). The resistance phenotype of the Cop rat to mammary
carcinogenesis was initially described in the 1940's. Using the chemical carcinogen
2-acetylaminoflourene (AAF), it was shown that Cop rats rarely developed
mammary cancers but were not protected from the formation of hepatic cancers.
Thus, the cancer resistance phenotype of the Cop rat was believed to be mammary
specific (Dunning and Curtis, 1945). Research completed within the last ten years by
both this laboratory and that of Dr. John Isaacs pinpointed the nature and site of
action of the genes involved in this phenotype. Using classical genetic breeding
studies and transplantation studies, it was demonstrated that the mammary
carcinoma resistance phenotype of the Cop rat was likely due to a single autosomal
dominant gene whose site of action lies within the mammary epithelium (Isaacs,
1986; Gould et al., 1989; Zhang et al., 1990).

The goal of this research is to map and eventually clone the rat gene(s)
responsible for the tumor resistance phenotype. The gene is termed Mcs (mammary

carcinoma susceptibility, which can be high or low depending on whether the gene




confers a resistance or enhancer phenotype). When it refers to a resistance gene, it
can also be called mammary carcinoma suppressor gene, the term we used in our
original proposal. We hope the gene(s) will prove useful as diagnostic indicators of
breast cancer risk in humans and possibly lead to the development of new drugs for
the treatment of human breast cancers. Initial work had already been completed
when this project was proposed. Using four strains of rats; two of which are
susceptible to chemically-induced mammary carcinogenesis (WF and F344) and two
of which are resistant (Cop and WKy), two separate backcross sets of animals were
generated and tested for the development of mammary tumors following
administration of 7,12-dimethybenz (a) anthracene (DMBA). A genome-wide scan
of the Mcs phenotype-related locus using simple sequence repeat (SSR) was
performed in the (WF X Cop)F1 X WF backcross (183 animals) using tumor number
as a quantitative trait, in order to allow for the possibility that resistance could be
due to more than one gene locus (Lander et al., 1987). About 50%-70% of the
genome was covered in the initial scan using a total of 114 polymorphic markers.
The minisatellite marker M13 (D2Uwm1) was shown to be linked to the Mcs
phenotype. This locus (termed Mcs1) was tentatively located within a 40 cM interval
at the centromeric end of chromosome 2. Fluorescence in situ hybridization (FISH)
to whole rat chromosomes using a P1 clone containing the sequence of marker
D2Mitl (R1025), which maps near D2Uwml, confirmed mapping to 2ql (Hsu et al.,
1994). D2Uwml yielded a lod score of 3.8. It is now suggested that for a genome-

wide scan of mouse or rat loci underlying complex traits in a backcross mapping




panel a lod score threshold of 1.9 should be reported as "suggestive linkage" while
that over 3.3 should be treated as "significant linkage" (Lander and Kruglyak, 1995).
To confirm a linkage in an independent cross, a pointwise p value of 0.01 is required
(Lander and Kruglyak, 1995).

The original objectives of the proposed research were as follows:

1. Isolate new simple sequence repeat markers to fine-map (to within 1 <M
resolution) the region of chromosome 2 surrounding the Mcs1 locus.

2. Test additional markers over the thus far untested regions of the rat
genome for linkage to the Mcs phenotype (to 5 cM resolution). Confirm mapping of
additional genes to specific chromosomes by FISH to whole chromosomes using
specific SSR-positive P1 clones.

3. Fine-map new areas in the genome (to 1 cM resolution) that demonstrate
linkage to the Mcs phenotype. Begin to positionally clone the gene(s) identified.

4. Isolate coding sequences from P1 or cosmid clones containing Mcs
phenotype-linked SSRs for determination of homologous regions in the human
genome and possible correlation with already identified human genes.

5. Test for loss of heterozygosity (LOH) of Mcs-linked SSR markers in
mammary tumors of two independent F1 hybrids following radiation and DMBA
tumor induction.

In the past three years, we have identified three additional loci, Mcs2 on
chromosome 7, Mcs3 on chromosome 1, and Mcs4 on chromosome 8 from the

genome-wide scan of the (WF X Cop)F1 X WF backcross. These loci were fine-




mapped with SSR markers isolated from chromosome-specific libraries as proposed
for Mcs1. The new SSR markers isolated from our chromosome-specific libraries
were initially called UW (University of Wisconsin) markers.

There have been changes in the name of rat genetics markers
(http:/ /ratmap.gen.gu.se/ratmap/ WWWNomen/Brief.html). Rat SSR markers
were initially recorded as Rxxx (xxx are numbers) originally, but they are now
inventoried as DxOrgx (the first x is chromosome number; Org is the code of
institution where the marker is generated, for example, UW markers generated in
this laboratory are DxUwmyx; the last x is number). In this report, we keep the R-
symbol system for markers in the appendix because this project started a long time
ago and early results were reported by R-symbol. But we use the D-symbol system
for markers mentioned in the text.

It should be noted at this point that all of the data reported in this document
is a result of the work of a group of investigators. Dr. Hong Lan (successor to Dr.
Virginia Ford, the original fellowship recipient) has focused his efforts over the last
two years on the fine-mapping of Mcs2 and Mcs3. While Dr. Lan did not specifically
conduct the work on Mcs1 and the LOH studies, he was involved on a weekly basis
with the progress and design of these experiments. As with most large mapping

projects, this one was a team effort.




BODY

MATERIALS AND METHODS

Generation of Chromosome-Specific Libraries

We have worked with several protocols for generating chromosome-specific
libraries and here we present the one we think works best. The modifications we made
will be discussed in more detail in the Results and Discussion section.

For chromosome-specific-libraries, the DNA sources were obtained by flow-
cytometric sorting of rat chromosomes (Shepel et al, 1994), and for each reaction, about 300-
400 sorted chromosomes were used directly for DOP-PCR without DNA purification.

DOP-PCR primers were either:

6-MW: 5'CCGACTCGAGNNNNNNATGTGG3' (Telenius et al, 1992), or two
primers that we modified:

ATCTGC: CCG ACT CGA GNN NNN NAT CTG C

ATCAGC: CCG ACT CGA GNN NNN NAT CAG C.

The template for each reaction consisted of 300-400 copies of whole sorted
chromosomes and 100 pg (~30 genome equivalents) of Copenhagen DNA as a
positive control. A negative control reaction containing no DNA was also included
to insure no background contamination. Final concentrations of reagents were 10
mM Tris, pH 8.3, 50 mM KCl, 3.0 mM MgCl,, 0.001% gelatin, 200 mM dNTPs, 1.5 mM

primer, 1.25 Units Taq LD polymerase (Perkin-Elmer Cetus) in a final volume of 50




ul. Note also that for sorted chromosomes, there will be additional corhponents in
the reaction which come from the sheath fluid in which the chromosomes are
sorted (some salts and spermine and spermidine), but these did not seem to inhibit
the reaction. The reaction mixtures were first heated to 95°C for 5 min, followed by
10 cycles at 94°C for 1 min, 30°C for 1.5 min, 30°C-72°C for 3 min, and 72°C for 3 min,
then followed by 20 cycles at 94°C for 1 min, 62°C for 1 min, and 72°C for 3 min with
1 second added to the 72°C step per cycle. A further 72°C synthesis step was carried
out for 10 min after the cycles were done. After DOP-PCR, 5 pl aliquot from each
reaction was subject to 1.5% agarose gel electrophoresis to check the PCR product
under ultraviolet light following ethidium-bromide staining. If both the controls
and the reactions worked well, half of each PCR reaction was then used for
hybridization-selection/affinity capture as described below.

In order to isolate SSR markers more effectively, some modifications have
also been made to the method we presented in the initial proposal for cloning the
DOP-PCR products. Before cloning, the DOP-PCR products were enriched for (CA),
repeats by hybridization-selection followed by affinity capture on Affinitips™ (a
pipette tip micro-column for streptavidin capture of biotinylated molecules;
Genosys). In this procedure, excessive biotin-labeled (CA), probe (200 pmol) was
hybridized with 20 pl denatured DOP-PCR products in 50 pl phosphate-SDS solution
(0.5 M NaPOg4, pH7 4, 0.5 % SDS) in an eppendorf tube at 50°C for 2 hrs. The PCR
products that contain (CA), repeats anneal to the biotinylated probe. Then the

hybridization mix was applied to the Affinitip column and the PCR products were
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bound and washed according to manufacturer's specifications. The single-stranded
target fragments containing (CA), repeats were eluted with ddH,O at 65°C, then
precipitated with ethanol and resuspended in 5 ul ddHO. This step enriched the
library for (CA),-containing clones by about 150-fold. We found that 10-80% clones
in the final library were positive for (CA), repeats after this hybridization selection.

To prepare the (CA)y-enriched products for insertion into the pAMP10 vector (Life
Technologies), the eluted DNA was re-amplified with the DOP-PCR primer bearing a
(CUA), tail at the 5' end. The 20 pl reaction was heated to 94°C for 5 min followed by 15
cycles at 94°C for 1 min, 50°C for 1 min, and 72°C for 1 min. The final synthesis step was
extended to 10 min. Two pl of this product were annealed into the pAMP10 vector (20 pl

reaction volume) according to the manufacturer's directions (CloneAmp Systems, Life
Technologies). One pl of the annealed reaction was used to transform DH5aF' library

efficiency competent cells (Life Technologies) yielding 50-4000 transformants grown under

ampicillin selection.

Screening and Sequencing of Chromosome-Specific Libraries.

Transformants were further screened for (CA), repeats by a simple PCR-based
method we call Colony PCR. One ul from a bacterial culture was used directly as

DNA template. Each clone was subjected to two 10 pl PCR reactions: one with M13
forward and reverse primers to estimate the insert size, the other with M13 forward
and reverse primers plus an additional N(CA);o primer to determine whether there

was (CA), repeat and how far the repeat was away from the M13 primer. In the M13
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forward + reverse + N(CA)g PCR, the N(CA);o primer annealed to (CA), repeats in
the insert sequence and hence gave a PCR product with either the M13 forward or
reverse primer. The random base at the 5' end of the N(CA);o primer served to
anchor the primer at the end of the repeat sequence in order to avoid multiple
priming along the repeats. Each reaction contained 10 mM Tris, pH 8.3, 50 mM KCl,
1.5 mM MgCl,, 0.001% gelatin, 200 mM dNTPs, 2.0 uM each primer, 0.25 Units Taq
polymerase (Perkin-Elmer Cetus). The mixture was heated to 94°C for 5 min
followed by 40 cycles at 94°C for 1 min, 55°C for 1 min, and 72°C for 30 sec. The final
synthesis step was extended to 7 min. For screening multiple clones, the PCR was
set up in 96-well plates using a multichannel Rainin motorized pipette, overlaid
with light mineral oil (Sigma) and run on an MJ] Research PTC-100 Programmable
Thermal Cycler. The PCR products were run on a 2% agarose gel and clones that
showed an extra band in the M13 forward + reverse + N(CA);g PCR were considered
positive clones that contained (CA), repeats.

Positive clones with suitable insert sizes were isolated and plasmid DNA for
sequencing was extracted by alkaline-lysis method using the QIAGEN plasmid
purification system (Qiagen, Inc). DNA sequencing to identify the unique DNA
sequences surrounding the (CA), repeats was performed using the PRISM Dye-
Terminator fluorescent sequencing system (Applied Biosystems Incorporated-Perkin
Elmer), and was performed at the University of Wisconsin Biotechnology Center.
The insert sequence data were analyzed either by the computer program GCG

Version 8.2 (University of Wisconsin-Madison), or by DNAStar (DNAStar, Inc) and
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Oligo 5.0 (National Biosciences Inc.). New primers were generated spanning the
repeats and were analyzed in the four rat strains to determine which markers were
informative (ie., polymorphic) in our parental strains.

To measure the length variation of the SSR, genomic DNA was used as a
template for PCR and PCR products were run on an 2.5-3.5% MetaPhor® agarose
(FMC BioProducts) gel. The gel was stained with SYBR green I (FMC BioProducts or
Molecular Probes) and visualized using a Fluorolmager (Molecular Dynamics). For
markers in which strain variations were too small to be detected by agarose gel,
radiolabeled deoxynucleotide was incorporated in the PCR reaction so that the
product could be visualized by autoradiography or phosphorimaging (Molecular
Dynamics) after electrophoresis on a polyacrylamide sequencing gel. Informative
markers were then genotyped in the backcross animals for linkage to the Mcs

phenotype.

Linkage Analysis of SSR Markers

Genomic DNA samples were prepared from either tails or spleens of the
backcross and parental animals using the standard procedure (Ausubel et al., 1987).
SSR marker primers were synthesized by (for markers we generated) or ordered
from (for markers commercially available) Research Genetics. Genotyping was
performed in 5 pl reactions containing 50 ng genomic DNA, 10 mM Tris-HCI, pH 8.3
, 1.5 mM MgCl,, 50 mM KCl, 0.01% w/v gelatin, 120 pmol of each primer, and

AmpliTaq polymerase (0.5-1 U/100 microliters, Perkin Elmer Cetus). The reactions
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were set up in 96-well plates (MJ Research Inc.) using a motorized microliter pipette
(Rainin Instrument Co. Inc.), overlaid with light mineral oil (Sigma) and run on
Programmable Thermal Cycler PTC-100 (M] Research Inc.) using the following
cycling conditions: denaturation at 94°C for 3 min followed by 30 cycles of 95°C, 1
min, 55°C, 1 min, and 72°C, 30 sec. A final 72°C extension step was carried out for 5
min. PCR products were rﬁn on an 2.5-3.5% MetaPhor® agarose (FMC BioProducts)
gel in 1 X TBE buffer (89 mM Tris-Borate, 2.5 mM EDTA, pH8.3), on an HE 99X Max
Submarine Electrophoresis Unit (Pharmacia Biotech). The gel concentration
depended on the size of the PCR products. After electrophoresis, the gel was stained
with 1:30,000 diluted SYBR green I (FMC BioProducts or Molecular Probes) in H,O in
a plastic container for 10 -40 min and then visualized using a FluorImager
(Molecular Dynamics). The signal was analyzed by the computer software

ImageQuant (Molecular Dynamics). For markers in which strain variations were
too small to be detected by agarose gel, PCR reactions were performed with [a-
*P]dATP (3000 Ci/mmole) and resolved on 5% polyacrylamide sequencing gels. For

each reaction 50 ng of genomic DNA was amplified in a 5 pl reaction containing 10

mM Tris-HCl, pH 8.3 , 1.5 mM MgCl,, 50 mM KClI, 0.01% w/v gelatin, 120 nM of each
primer, 200 pM dNTPs, 0.14 pCi of [(x-azP]dATP, and 0.25 U AmpliTaq polymerase.

The reactions were set up in 96-well plates using a Biomek workstation (Beckman
Instruments), overlaid with mineral oil and run on a Programable Thermal Cycler
PTC-100 using the following cycling conditions: denaturation at 94°C for 3 min

followed by 25 cycles of 95°C, 1 min; 55°C, 1 min; and 72°C, 30 sec. A final 72°C
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extension step was carried out for 5 min. Wet gels were transferred to Whatman
3MM paper, wrapped in plastic wrap, exposed to either film or a phosphorimager
screen (Molecular Dynamics) followed by analysis by eye or the ImageQuant
software respectively.

Genotypes and phenotypes of backcross animals were subjected to linkage
analysis using the MAPMAKER computer program (Lander et al., 1987) and a
quantitative analysis was performed with the program MAPMAKER-QTL (Lander
and Botstein, 1989). In the quantitative analysis, the square root transformation
(Dietrich et al., 1993) of the tumor number is dealt with as a quantitative trait and
estimates the contribution of a given locus to the phenotype. Alternatively, Qlink
(Drinkwater, University of Wisconsin-Madison), a newly written program to
simplify linkage analysis for quantitative trait loci using the nonparametric
methods based on those described by Kruglyak and Lander (1995) was also used to
estimated the lod score and p value at a given marker position. All the lod scores in
this reported were calculated by Qlink unless otherwise specified.

For the genome-wide scan in the (WF X Cop)F1 X WF backcross (183 animals),
90 rats having the highest and lowest number of carcinomas were chosen for initial
genotype analysis in order to reduce the number of progeny to be genotyped.
Selecting these extremes increase the odds of locating genetic linkage to the
phenotype (Lander and Bostein, 1989). Any regions having a lod score of 1.0 or
greater with this panel were then genotyped using the remaining 93 DNA samples

from animals having an intermediate number of tumors.
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Test for Loss of Heterozygosity of Mcs-Linked SSR Markers

In order to identify and compare the genetic lesions associated with
tumorigenesis in rats carrying Mcs genes, we induced mammary carcinomas in (WF
X Cop)F1 rats using either DMBA or radiation. The tumors were screened for allelic
imbalance using PCR and polymorphic SSR markers spanning the genome.

DNA was isolated from tumors by proteinase K digestion and phenol:
chloroform extraction. For each DNA sample, the total PCR volume was 5 pl,
consisting of 2.5 ul of 20 ng/ul DNA and 2.5 pl of PCR master mix. Final
concentrations in the PCR reaction mixture were 1 X PCR buffer, 200 uM dCTP,

dTTP, dGTP, 20 uM dATP, 0.12 pM each primer, 0.25 U of AmpliTaqg DNA
polymerase (Perkin-Elmer) and 0.025 pl [0-32P]ATP (DuPont NEN, specific activity

3000 Ci/mmol, 10 mCi/ml). A Biomek 1000 or 2000 automated laboratory
workstation (Beckman) was used to set up the PCR reactions in 96-well plates. The
PCR cycling consisted of 94°C for 3 min followed by 25 cycles of 94°C for 1 min; 55°C
for 1 min; and 72°C for 30 sec. A final 72°C extension step was carried out for 5 min.
The samples were heat-denatured, mixed with 4 pl loading dye, loaded on 5%
sequencing gels and resolved. Gels were exposed to a phosphor screen, scanned
using a PhosphorImager (Molecular Dynamics), and analyzed quantitatively using
ImageQuant software. An allelic imbalance such as loss of heterozygosity or gene
duplication was defined as a 25% or greater difference in the amount of radiolabel

incorporation into the PCR products for the individual alleles after normalization
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to an F1 control spleen DNA sample. SSR instability was identified as any change in
allele sizes. All allelic imbalances initially observed were confirmed by repeating

the PCR and quantitative analysis at least one time.

RESULTS AND DISCUSSION

Objective 1. TIsolate new simple sequence repeat markers to fine-map (to within 1
cM resolution) the region of chromosome 2 surrounding the Mcs1 locus.

The centromeric end of rat chromosome 2 is one of several poorly mapped
areas in the rat genome so that markers are not readily available for fine-mapping
the Mcs1 locus . The Mcs1 locus was defined in a 40 cM lod-1 region with the only
marker available when this project started (D2Uwm1). We have tried in the past
three years to isolate new SSR markers from chromosome-2-specific libraries to fine-
map the Mcs1 region, and have recently successfully developed the methodology.

In addition, microsatellite markers from various commercial and collaborative
sources were used. We have 10 new markers around the Mcs1 region; four of which
(D2M1t29, D2Rat2, D2Rat3, and D2Wox2) were from the literature, one (IP13DIS) was
generated from a newly published rat gene sequence, and 5 were markers we
generated from our chromosome-2 specific libraries. Using this relatively dense

genetic map, MAPMAKER/QTL analysis with square-root of the tumor number as

the phenotype yielded a peak lod score of 4.1 near marker D2Uwm14 (=1 cM from
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D2Uwm1) with a lod-1 support interval of approximately 8 cM from the centromere
of the chromosome to marker D2Uwm16 (Figure 1).

As we mentioned in the 1995 annual report, we failed to generate a
chromosome-2-specific library from micro-dissected chromosome fragments or by
using the GDRDA (Genetically Driven Representational Difference Analysis)
technique. The new markers were generated from libraries constructed from flow-
sorted chromosomes. The rat chromosome 2 is large, so the new SSR markers
reported here represent only a small number of UW markers from the
chromosome-2 specific libraries. When we obtained the 5 UW markers in our target
region, we had 14 markers mapped to other parts of the chromosome and 11
mapped to other chromosomes.

It should be pointed out that we found a gene marker (IP13DIS, NADH
ubiquinone oxidoreductase subunit (IP13) gene, GenBank access no. L38439) which
maps about 6 cM away from Mcs1. This is the only gene that was identified close to
the Mcsl region on rat chromosome 2. This marker should be very useful when
looking for the homologous regions of Mcs1 in the human and mouse genomes,
although the gene itself is not mapped in either the human or the mouse.

In order to better define Mcs1 and to confirm its mapping position, two
additional independent rat crosses were generated and tested for linkage as was done
for the (WF X Cop)F1 X WF backcross (183 animals) (BC1). We first generated a (WF
X Cop)F1 X (WF X Cop)F1 intercross mapping panel (250 animals) (F2) and induced

tumors in F2 animals with DMBA. Then we generated a second backcross (BC2)
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which contained 417 female animals that were treated with DMBA. DNA samples
from all of the animals in F2 and BC2 were genotyped for markers in the lod-1
intervals of the Mcs1 and other Mcs loci. A combined analysis of data from all the
three crosses was performed to better define the peak markers using the method in
the QLink program developed by Drinkwater (1997). This analysis yielded a peak
lod score of 15.2 near D2Uwm14, indicating that there is clearly a mammary
carcinoma resistance locus, Mcs1, near the centromeric end of rat chromosome 2.
We are about to start physical mapping of this locus so that we may positionally

clone the Mcs1 gene in the future.

Objective 2. Test additional markers over the thus far untested regions of the rat
genome for linkage to the Mcs phenotype (to 5 cM resolution). Confirm mapping of

additional genes to specific chromosomes by FISH to whole chromosomes using

specific SSR-positive P1 clones.

During the past three years, there has been great progress in the Rat Genome
Project at the Whitehead Institute/MIT Center for Genome Research. The number
of SSR markers available for rat gene mapping had increased to about 2000 by June,
1997 (http:/ /www.genome.wi.mit.edu/rat). Those that are informative have been
genotyped in BC1 and were added to our overall map of the genome and have been
tested for linkage to the Mcs phenotype. The updated genome map shown in the
Appendix contains 340 markers compared with the 114-marker map at the time the

project started. If the size of the rat genome is estimated as 2250 cM
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(http:/ /ratmap.gen.gu.se/chromap.html), the average distance between two markers
on our map is about 6.6 cM.

The genome-wide scan in BC1 initially revealed three additional loci with lod
scores 2 1.0 on chromosomes 7, 1, and 8, respectively. We then added markers to

each chromosomal map to more densely cover those regions, and tested the full
panel of 183 animals using all markers. As the density of the rat genetic map has
improved in recent years, we did not confirm mapping of these loci to specific
chromosomes by FISH to whole chromosomes using specific SSR-positive P1 clones.
Instead, we tested the linkage of these loci in other independently generated
mapping panels and performed combined analysis as was done for Mcs1 to confirm
the existence of these loci. We found three other loci, Mcs2 on chromosome 7, Mcs3
on chromosome 1 and Mcs4 on chromosome 8 that show linkage to the resistance

phenotype (see Objective 3 for more details).

Objective 3. Fine-map new areas in the genome (to 1 ¢M resolution) that

demonstrate linkage to the Mcs phenotype. Begin to positionally clone the gene(s)

identified.

Subtopic 1. Mcs2
We made several chromosome-7-specific libraries and isolated new SSR

markers (we called UW markers) from these libraries. There are 17 polymorphic
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markers added to the chromosome 7 map of the (WF X Cop)F1 X WF backcross. The
marker that shows the highest lod score is D7Uwm8 (lod score 3.5) (Figure 1).

However, in the F2 mapping panel (250 animals), no linkage was found
between Mcs2 markers and the tumor resistance phenotype. As a significant lod
score of 3.3 indicates that the probability of a false positive event (due to statistics
fluctuation) in a genome-wide scan is less than 5%, it is unclear why this locus, with
a lod score of 3.5 in the backcross, did not show any linkage in the intercross. We
then tested the markers in BC2 (with 417 animals) and the linkage showed up again.
A combined analysis of data from all the three crosses showed that Mcs2 has a peak
combined lod of 7.9 but was within a large interval of more than 36 cM.

While we constructed chromosome-7-specific libraries, we made some
modifications to our original protocol to improve the effectiveness of generating
new SSR markers. As we mentioned in the annual report in 1996, there had been
some problems with the first chromosome-7-specific library we analyzed in 1995-
1996:

1) It seemed that unique clones from the library were limited. At the initial
screening stage, most of the clones in the library were unique. However, as more
clones were sequenced, fewer clones appeared to be unique. After 200 to 300 clones
had been sequenced, we could only get one unique sequence from every 2 or 3
clones, thus we assumed that the library was short of novel unique clones. As there

was not a simple method to tell whether a clone was unique prior to sequencing,
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and sequencing more and more duplicate clones was costly, we moved on to new
libraries.

2) Many clones from the library contained inserts that had repeats at or near
the end of the insert, therefore we were usually not able to pick up enough flanking
sequences for PCR primer design. We assumed this may have resulted from the
DOP-PCR primer used in making the library. The 3' end of the primer, TGTGG,
might easily anneal to (CA), repeat regions during the low annealing temperature
DOP-PCR stage and thus might amplify many sequences with (CA), repeats at one
end.

3) Contamination in the DOP-PCR was usually a problem too. In the
protocol we reported last year, two rounds of PCR were needed to accumulate
enough products for hybridization selection of SSR fragment, as observed by
another group (Gu et al., 1996). As there are 10 cycles with an annealing
temperature of about 30°C in the DOP-PCR protocol, any tiny contamination of the
DNA source will be amplified. Therefore, after two rounds of PCR, the no-DNA
control from the first round of PCR was usually contaminated. The technical
difficulty in performing DOP-PCR usually limits its application to genetic studies.

When we made new libraries in the past year, we deliberately took efforts to
improve the DOP-PCR. First, we modified the 3" end of the commercially used 6-
MW DOP-PCR primer. We designed several 3" ends which would not bind to (CA),

repeats during PCR, and checked their abundance in the rat genome by searching for
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their occurrence among the rat DNA sequences that had been submitted to GenBank

by June of 1996. We found the following result:

3" end Occurrence
ATGTCC 4025
ATGTCG 1026
ATGTGC 3360
ATGTCG 1336
ATCTGC 4397
ATCTGG 4746
ATGAGG 5084
ATGACG 1402
ATGAGC 3635
ATCAGC 3608
ATCACC 3939
ATCAGG 3714

The two underlined ends, which are not regular and are relatively abundant
in the rat genome, were chosen to design the following two DOP-PCR primers (bold
letters are bases different from 6-MW primer):

ATCTGC: CCG ACT CGA GNN NNN NAT CTG C

ATCAGC: CCG ACT CGA GNN NNN NAT CAGC
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To avoid contamination, we optimized the PCR conditions in order to obtain
sufficient PCR products through only one round of PCR. We found that the
concentlration of magnesium (Mg®) in the PCR reaction was critical. The higher the
Mg?*, the more PCR products we could get, however, the smaller the size of the PCR
products. The optimal Mg** was 2.5-3.5 mM for our purpose, which was two-fold
the concentration that was used for ordinary PCR. Following the new protocol, we
can obtain sufficient PCR products with an average size of 500 bp after one round of
PCR, which were free of contamination. The new protocol also reduces the chance
of having repeats at the ends of the inserts. Therefore the technical difficulties we
had at the beginning of the project were resolved. Our protocol should also be

helpful to other investigators in this field.

Subtopic Mcs3

The third potential locus that controls the resistance phenotype of mammary
carcinogenesis in the Cop rat is termed Mcs3 , which is localized to the upper-central
region of chromosome 1. In BC1 we obtained a lod score of 1.7, which is close to a
suggestive linkage (1.9). The “locus” locates near marker D1Wox6 (Figure 1). We

then tested the chromosome 1 markers around Mcs1 in F2 and BC2. The result

showed a combined peak lod score of 5.1 in an interval of =30 cM.
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Subtopic Mcs4

The loci Mcs1 through Mcs3 were associated with the resistance phenotype
because animals with 0-1 tumors retained an allele from the resistance strain (Cop)
at the loci and animals with many tumors retained both alleles from the susceptible
strain (WF). In contrast, Mcs4 on chromosome 8 was associated with the tumor
enhancer phenotype because the locus showed no Cop allele in the low tumor
number group but always a Cop allele in the high tumor number group, this locus
was thus believed to contain a tumor enhancer gene from the Cop rat. This locus
showed a lod score of 1.1 in BC1, which is below the suggestive threshold. However,
we pursued the study of this locus since its effect was the opposite of the other three

Mocs loci. There was also a small peak with a parametric lod score of 1.1 on
chromosome 20 (data not shown). No other chromosomal regions yielded a lod 1.

A combined analysis of data from BC1, F2 and BC2 showed Mcs4 has a peak
lod of 5.11 in an interval of approximately 15 cM.

Thus, there are 4 loci affecting the carcinoma phenotype in the Cop rat. The
Mcs loci are summarized in Table 1. Since Mcs1 has a much higher lod score than
the other loci, we think it is the major gene controlling the mammary carcinoma
susceptibility in the Cop rat, therefore our effort for positional cloning is focused on

Mesl.
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Objective 4. Isolate coding sequences from P1 or cosmid clones containing Mcs
phenotype-linked SSRs for determination of homologous regions in the human
genome and possible correlation with already identified human genes.

We did not get a chance to start this experiment as our major efforts have
been focused on isolating more SSR markers to fine-map the Mcs loci. However,
this experiment may not be necessary for all the loci. As the rat genome project
advances, we may be able to correlate our loci to some already identified genes, or
we may be able to find human and mouse homologs of the Mcs loci by identifying
homologous regions as defined by other genes mapped close to Mcs. We have
obtained some homology information about Mcs3 (see below). But we do not have
enough evidence to define the homologous region of Mcs1 and Mcs2.

The Mcs3 region was determined to be homologous to mouse chromosome 7
and is likely to be homologous to one of several human chromosome regions such
as 11p, 11q, 15q, or 19q. From our mapping data in BC1, the Mcs3 locus lies between
marker D1Mit11 (R260) and D1Mit2 (R1301), which is flanked by gene markers Klk1
(Kallikrein 1, renal/pancreas/salivary, GenBank no: M19647, D1Wo0x18) and Omp
(Olfactory marker protein, D1Mgh19) (http://ratmap.gen.gu.se). These two genes
have already been mapped in the mouse and human. From the mouse genome
data base at http:/ /www.informatics.jax.org and human genome data base at
http:/ /gdbwww.gdb.org, we knew that K1kl maps to mouse chromosome 7 at 23.0

cM and human chromosome 19q13, and Omp maps to mouse chromosome 7 at 48.0
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cM and human chromosome 11q14-21. The genes between KIK1 and Omp in the
mouse genome, such as Oca2, Tyr, Hbb, were also known to be on rat chromosome 1
by somatic cell hybrid study (see http://ratmap.gen.gu), so that we deduced that the
Mcs3 was homologous to mouse chromosome 7 from 23.0 ¢cM to 48.0 cM on the
mouse genetic map. The Hbb gene (Hemoglobin, beta) was physically located on rat
chromosome 1q22, implying that Mcs3 is also near 1q22. However, these genes map
to different chromosomes in the human genome, such as 11q21, 15q11. Thus by a
comparison of the rat and mouse gene maps, we determined that the Mcs3 region is
homologous to mouse chromosome 7q and is conserved between the rat and
mouse. A clearer human homologous region will be defined when more genes are

mapped in the rat genome.

5. Test for loss of heterozygosity of Mcs-linked SSR markers in mammary tumors of
two_independent F1 hybrids following radiation and DMBA tumor induction.

Polymorphic markers throughout the rat genome were tested for loss of
heterozygosity in radiation- and DMBA-induced tumors from (WF X Cop)F1
animals. No allelic imbalance was detected in the mapped locations of Mcs1
through Mcs4. However, a scan of the genome revealed random allelic imbalance
in the radiation-induced tumors. In addition, a non-random LOH on chromosome
1 in the DMBA-induced tumors was documented, but the position at which high
LOH was observed was around the H-ras locus, which is 50 cM away from Mcs3.

The result suggests that loss of Mcs alleles may not be required for the formation of
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mammary tumors, implying that these genes are not functioning as typical tumor

suppressor genes (such as p53).
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CONCLUSIONS

We have found 4 loci (3 resistance and 1 enhancer) that showed linkage with
the mammary carcinoma phenotype in the Cop rat. The locus on chromosome 2
(termed Mcs1) is believed to contain the major tumor resistance genes, while other
loci such as Mcs2 on chromosome 7, Mcs3 on chromosome 1, and Mcs4 on
chromosome 8, represent relatively weaker genes. We will concentrate our efforts
on further fine-mapping and positional cloning of Mcs1 gene.

To summarize, the Mcs loci (or genes) we have identified through this project

are listed in Table 1.
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APPENDIX
Genetic linkage map of rat genome constructed in the (WF X Cop)F1 X WF

backcross.
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